博客
关于我
【机器学习开放项目】图像分割数据集
阅读量:228 次
发布时间:2019-02-28

本文共 411 字,大约阅读时间需要 1 分钟。

项目目标是以有意义的方式分割图像。伯克利收集了三百张图片,并支付学生手工分割每幅图片(通常每幅图片都会有多个手工分割)。其中200张是训练图像,其余100张是测试图像。数据集包括用于读取图像和真实标注、计算基准测试分数以及一些其他实用功能的代码。它还包括用于图像分割示例的代码。该数据集是比较新的,相关研究问题还没有解决,所以您有可能为您的项目设计出一个领先的算法。

项目思路:基于区域的图像分割。

大多数图像分割算法都侧重于基于边缘或基于颜色和纹理的不连续性的分割。然而,该数据集中的真实性允许有监督学习算法根据在某区域上计算的统计数据分割图像。一种方法是将图像“过度分割”为超像素(Felzenszwalb 2004,代码可公开下载),并将超像素合并为更大的片段。图形模型可以通过在相邻像素之间添加适当的势位来表示簇中的平滑度。在这个项目中,您可以展开的工作,例如,学习这样的势位,在具有非常大的树宽度模型中进行推理。

转载地址:http://hnlp.baihongyu.com/

你可能感兴趣的文章
OJ中常见的一种presentation error解决方法
查看>>
OK335xS UART device registe hacking
查看>>
ok6410内存初始化
查看>>
OkDeepLink 使用教程
查看>>
OKHTTP
查看>>
Okhttp3中设置超时的方法
查看>>
Okhttp3添加拦截器后,报错,java.io.IOException: unexpected end of stream on okhttp3.Address
查看>>
okhttp3缓存
查看>>
Okhttp拦截器
查看>>
OkHttp源码解析(构建者模式、责任链模式、主线流程)
查看>>
OkHttp透明压缩,收获性能10倍,外加故障一枚
查看>>
OKR为什么到今天才突然火了?
查看>>
ol3 Demo2 ----地图搜索功能
查看>>
OLAP、OLTP的介绍和比较
查看>>
OLAP在大数据时代的挑战
查看>>
Vue.js 学习总结(12)—— 微前端实践思考与总结
查看>>
oldboy.16课
查看>>
OLEDB IMEX行数限制的问题
查看>>
ollama 如何删除本地模型文件?
查看>>
ollama-python-Python快速部署Llama 3等大型语言模型最简单方法
查看>>